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Figure 1: We present a diffusion-based framework DabFusion to dance any beat given any image. With various music styles
of AIST++ dataset, our model predicts matching future video frames (128 × 128) starting from the same reference image.

Abstract

The task of generating dance from music is crucial, yet
current methods, which mainly produce joint sequences,
lead to outputs that lack intuitiveness and complicate data
collection due to the necessity for precise joint annotations.
We introduce a Dance Any Beat Diffusion model, namely
DabFusion, that employs music as a conditional input to di-
rectly create dance videos from still images, utilizing condi-
tional image-to-video generation principles. This approach
pioneers the use of music as a conditioning factor in image-
to-video synthesis. Our method unfolds in two stages: train-
ing an auto-encoder to predict latent optical flow between
reference and driving frames, eliminating the need for joint
annotation, and training a U-Net-based diffusion model to
produce these latent optical flows guided by music rhythm
encoded by CLAP. Although capable of producing high-
quality dance videos, the baseline model struggles with
rhythm alignment. We enhance the model by adding beat

information, improving synchronization. We introduce a 2D
motion-music alignment score (2D-MM Align) for quanti-
tative assessment. Evaluated on the AIST++ dataset, our
enhanced model shows marked improvements in 2D-MM
Align score and established metrics. Video results can be
found on our project page: https://DabFusion.github.io.

1. Introduction
Music-to-dance generation offers significant potential

for automating choreography, benefiting various real-world
applications. Existing methods [26, 27, 47, 35] focus on
generating joint sequences, which, despite being effec-
tive, often produce outputs that are less intuitive for users
and require precise joint annotations during data collec-
tion. This complicates the process. The field of condi-
tional image-to-video (I2V) generation—where videos are
produced from a single still image guided by textual de-
scriptions [54, 39, 11], driving videos [6, 65, 55], or pose

https://DabFusion.github.io


sequences [38, 45, 44, 68]—offers a way to address these
challenges. However, using music as a driving condition
remains underexplored, presenting an opportunity for inno-
vation. In this paper, we propose the Dance Any Beat Dif-
fusion model (DabFusion), which generates dance videos
from still images and music, enhancing intuitiveness and
eliminating the need for joint annotations. DabFusion also
pioneers the use of music as a condition in image-to-video
synthesis.

DabFusion is highly versatile, capable of generating
dance videos using the AIST++ dataset and animating indi-
viduals in new scenarios. As shown in Figure 1, we animate
previously unseen individuals by merging their images with
a background from the AIST++ dataset, bringing them to
life through dance. This capability makes DabFusion prac-
tical for real-world applications, such as aiding dancers and
choreographers in learning and practice, fostering engage-
ment on social media, and enabling users without formal
dance training to create personalized dance content. When
generating dance videos using the AIST++ dataset, as il-
lustrated in Figure 2, DabFusion excels in producing varied
dance styles with different dancers from multiple perspec-
tives and diverse initial poses. This flexibility enhances the
intuitiveness and applicability of the generated content.

Inspired by recent I2V works [32, 44, 57], our model’s
training process is structured into two phases. First, a latent
flow auto-encoder is trained unsupervisedly to estimate the
latent optical flow between reference and driving frames in
a video, aiding in warping the reference frame to generate
movement. Then, a U-Net based diffusion model generates
latent flows guided by music and a starting image. For mu-
sic information extraction, we use CLAP [59], the largest
audio representation foundation model, to facilitate high-
quality, music-aligned dance video generation.

A critical aspect of dance video evaluation is synchro-
nization between the dancer’s movements and the music’s
beat, an area needing improvement in our initial model.
To address this, we integrate Librosa [30], a tool for au-
dio signal analysis and beat extraction, with CLAP’s out-
put. This enhancement improves alignment between dance
poses and music beats, offering a more coherent and engag-
ing viewing experience. To quantitatively assess this align-
ment, we introduce the 2D motion-music alignment (2D-
MM Align) score, inspired by the Beat Alignment Score
[27] for 3D motion-music correlation. This metric evalu-
ates synchronization between motion and music in 2D sce-
narios, demonstrating the effectiveness of our approach in
producing rhythmically aligned dance videos.

Our contribution can be summarized as follows:

• We introduce a novel approach capable of directly gen-
erating dance videos from music, significantly enhanc-
ing the intuitiveness of the generated content and its
applicability in real-world settings.

• Our research broadens the horizon of conditional
image-to-video generation by exploring music as a
novel conditional input. We investigate the extraction
of meaningful information from music through the in-
tegration of large-scale foundation models and estab-
lished signal-processing methodologies.

• We establish a baseline and propose a beat alignment
module for this innovative task, supported by extensive
evaluations and the introduction of a new evaluation
metric to assess motion-music alignment.

2. Related Works
Generating dance sequences from music uniquely inter-

sects motion synthesis [1, 4, 12, 14] and music interpre-
tation [58, 30, 59], aiming to create choreographed move-
ments synchronized with input music. This extends beyond
traditional motion synthesis, as choreographed movements
are complex to animate. Early research [43, 69, 9] focused
on producing 2D dance sequences due to the availability of
online dance videos and advances in 2D human pose esti-
mation [5]. However, 2D predictions lack expressiveness
and applicability, prompting a shift to 3D dance generation.
Recent methods leverage LSTMs [49, 2, 20, 61], GANs
[25, 48, 10, 21], and Transformers [17, 27, 47, 35, 64]
for 3D motion generation. The AIST++ dataset [27], a
rich compilation of 3D motion data, has significantly ad-
vanced the field. Notable models include FACT [27], a full-
attention-based cross-modal transformer using sequence-to-
sequence learning for lifelike 3D dance sequences, and Bai-
lando [47], which combines a pose VQ-VAE with a Motion
GPT for temporal coherence via actor-critic learning. While
existing research focuses on generating motion sequences
from music, Ren et al. [37] synthesize videos using these
sequences. Our work bypasses intermediary joint sequence
generation, directly creating dance videos from music.

Image-to-Video (I2V) generation [3, 8, 16, 29, 34, 54,
60, 62, 66, 55] transforms static images into dynamic
video sequences. This domain relates closely to single-
image video prediction [22, 28], which infuses still images
with temporal continuity to create believable motion. A
specialized subfield, conditional image-to-video generation
[3, 8, 16, 29, 54, 62, 55], incorporates guiding conditions or
cues into the video generation process, enriching the con-
tent with specific characteristics or actions. For example,
Wang et al. [54] developed a conditional GAN architecture
to create human videos from static images, conditioned on
labels describing facial expressions or actions. Yang et al.
[62] introduced a pose-guided approach that extracts poses
from an image and uses GANs to generate a sequence of
poses and then video frames, translating static postures into
animated sequences. Building on these, Wang et al. [55]
unveiled the Latent Image Animator (LIA), which animates
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Figure 2: Exemplar videos generated from our DabFusion. Taking first image as starting frame and the unique music clip as
guiding dance style, our framework is capable of generating varied styles of dance videos featuring different dancers from
multiple perspectives with diverse initial poses and positions.

still images into videos under the guidance of an auxiliary
video, leveraging a self-supervised auto-encoder to navigate
latent space for animation. However, using audio, particu-
larly music, as a conditioning factor in I2V remains largely
unexplored. Introducing musical elements as conditions for
video generation could open new research avenues and ap-
plications, suggesting an exciting direction for future work
in I2V technology.

3. Method
Our methodology aims to generate latent optical flows

guided by musical inputs. Recent works [31, 44, 52, 53, 32]
in motion transfer have shown the effectiveness of using la-
tent optical flow for warping images. This approach is more
resource-efficient, requiring less computational power and
time compared to high-dimensional pixel or latent feature
spaces. Diffusion models are chosen for their exceptional
quality and robust controllability. Our methodology begins
by training an auto-encoder to discern optical flow between
video frames. This trained auto-encoder then aids in train-
ing the diffusion model to generate latent flows. We extract
musical information using CLAP to encode the music. Our
enhanced model also incorporates beat information for bet-
ter representation.

3.1. Latent Flow Estimation

The objective of this phase is the training of an auto-
encoder capable of accurately capturing and modeling mo-
tion between video frames within a latent space. As il-
lustrated in Figure 3, the architectural components of the
model comprise an image encoder, a flow predictor, and an
image decoder. During the training process, two frames are
randomly selected from a single video to serve as a refer-
ence frame xref and a driving frame xdri, both sharing di-
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Figure 3: Training of latent flow auto-encoder. The flow
predictor learns to estimate the latent flow f and occlusion
map m between the reference frame xref and driving frame
xdri. The image encoder encodes xref into a latent rep-
resentation z, f and m are utilized to manipulate z into z̃
which is then decoded by an image decoder to generate a
output image x̂out. The objective of the training is to mini-
mize the disparity between xdri and x̂out.

mensions of Hx × Wx × 3. The image encoder processes
xref , converting it into a compact latent representation, z,
with dimensions Hz ×Wz × Cz . Subsequently, similar to
[44, 53], the flow predictor, receiving both xref and xdri as
inputs, computes the backward latent optical flow, f , and
an occlusion map, m, to denote the transformation between
these frames. The estimated latent flow, f , maintains the
spatial dimensions of z and incorporates two channels to
articulate the horizontal and vertical displacement across
frames. Using backward flow estimation, the warping of z
using f is realized through an efficient differentiable bilin-



ear sampling [18]. Concurrently, the occlusion map, sized
Hz ×Wz × 1, facilitates the reconstruction of areas within
z that become obscured or revealed due to movement. Val-
ues within this map range from 0 to 1, where 1 signifies
unoccluded regions, and 0 denotes complete occlusion. The
warped latent map, z̃, is derived through the following equa-
tion:

z̃ = m ⊙ fw(z , f), (1)

where fw(· , ·) denotes the back-warping operation and ⊙
is the element-wise multiplication. Finally, the image de-
coder takes z̃ as input, reconstructing visible portions while
simultaneously inpainting occluded regions to produce the
output image x̂out. The training objective is to minimize
a reconstruction loss that quantifies the difference between
x̂out and xdri. This loss employs the perceptual loss pro-
posed by Johnson et al. [19], which utilizes features ex-
tracted by a pre-trained VGG-19 network [46]. Formally,
the reconstruction loss is expressed as:

Lrec =

N∑
i=1

|Vi(x̂out)− Vi(xdri)| , (2)

where Vi(·) extracts the ith channel features from a speci-
fied layer of VGG-19, and N is the total number of feature
channels within that layer.

3.2. Latent Flow Generation

We use diffusion models to generate latent flow. These
generative models reverse a diffusion process, which grad-
ually turns data into Gaussian noise. The reverse process
then restores this noise back to the original data distribu-
tion. Mathematically, the diffusion process is a Markov
chain that adds noise to the data over T steps.The process
starts with the original data x0 and ends with a sample xT

that resembles Gaussian noise. The transition from xt−1 to
xt can be defined by the following equation:

xt =
√
αtxt−1 +

√
1− αtϵt, (3)

where αt is a variance schedule that determines the amount
of noise added at each step, and ϵt is sampled from a stan-
dard Gaussian distribution N (0, I). The reverse diffusion
process seeks to reconstruct the original data from noise
by learning the conditional distribution p(xt−1|xt). This is
achieved by training a denoising model to estimate the pa-
rameters of the Gaussian distribution of xt−1 given xt. The
model outputs parameters µθ(xt, t) and σθ(xt, t), which de-
fine the Gaussian distribution from which xt−1 is sampled:

xt−1 = µθ(xt, t) + σθ(xt, t) · ϵ, (4)

where ϵ is again sampled from a standard Gaussian dis-
tribution. The model is trained to minimize the differ-
ence between the generated and actual data distributions,

with an objective function often approximating the nega-
tive log-likelihood of the data under the model. A prac-
tical approach for training diffusion models is employing
the Mean Squared Error (MSE) between the predicted and
actual noise used in data corruption at each diffusion step.
Given the diffusion process, the goal during training is to
predict the noise ϵ that was added to the original data at
each step. The loss function for a single training step can be
formulated as:

L = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
, (5)

where ϵθ(xt, t) is the predicted noise by the model given the
noised data xt at time step t. ϵ is the actual noise added to
the data x0 to obtain xt.

Our approach utilizes a 3D U-Net [7] as the denoising
mode. And the training of the model is in conjunction with
the trained image encoder and flow predictor. Given an
input video xN

0 = {x0, x1, ..., xN} and its corresponding
music m. We first use the flow predictor to estimate latent
flow sequence fN

1 = {f1, ..., fN} and occlusion map se-
quence mN

1 = {m1, ...,mN} between starting frame x0

and remaining frames {x1, ..., xN}. The size of fN
1 is

N ×Hz ×Wz ×2 and the size of mN
1 is N ×Hz ×Wz ×1.

Subsequently, we concatenate these two sequences along
the last dimension to get a0 = [fN

1 ,mN
1 ] which has the size

N × Hz × Wz × 3. Then, we perform diffusion process
which gradually add 3D Gaussian noise to a0 to map it to a
a standard Gaussian noise. This is then reversed, using the
image encoder to map the initial frame x0 to latent space
z0 and incorporating music embeddings e for conditioning
the denoising model. We will discuss how to encode music
in Sec. 3.3. The updated loss function, accounting for the
conditioning on z0 and e, is given by:

L = Et,a0,ϵ

[
∥ϵ− ϵθ(at, t, z0, e)∥2

]
. (6)

The process of inference is shown in Figure 4 , given
an initial image x0 and a piece of music m, the image is
first encoded into a latent space representation z0, while the
music is transformed into an embedding e. Subsequently, a
volume of randomly sampled Gaussian noise, with dimen-
sions N × Hz × Wz × 3, undergoes a gradual denoising
process by the U-Net. This process yields hN

1 which is the
concatenation of a latent flow sequence fN

1 and correspond-
ing occlusion map sequence mN

1 . z0 is then warped by each
latent flow in the latent flow sequence and corresponding
occlusion map in the occlusion map sequence to generate a
new latent map sequence z̃N1 . These maps are sequentially
fed into the image decoder, which synthesizes the frames of
the new video.

3.3. Music Encoding

Extracting meaningful information from music is crucial
to our task. We use CLAP, developed by Wu et al. [59], for
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Figure 4: Inference process of DabFusion. DabFusion incorporates noise input along with image embedding z0 and music
embedding e as conditions. Following the denoising stage of the diffusion model, we obtain hN

1 , comprising a concatenated
sequence of latent flow and corresponding occlusion maps. hN

1 is utilized to transform z0 into a new sequence of latent maps,
denoted as z̃N1 , which is subsequently decoded to produce an image sequence.

music encoding. CLAP is a state-of-the-art audio represen-
tation model trained on a large dataset of text-audio pairs,
learning a joint text-audio embedding space through con-
trastive learning. Our choice of CLAP is strategic, aiming
to decode dance style information from musical cues using
text as a bridge for music-to-dance style translation. While
CLAP excels at encoding musical style, it struggles with
detecting rhythmic patterns. To address this, we integrate
beat information extracted via Librosa with CLAP’s output,
creating a composite music embedding. This enhanced ap-
proach improves synchronization between motion and beat
compared to our baseline model.

4. Experiments
4.1. Dataset and Implementation Details

Our model is trained and evaluated using the AIST++
[27] dataset, a leading resource in 3D human dance.
AIST++ is recognized as the most comprehensive dataset
in its domain, encompassing 10 dance genres. Each genre
features 6 unique pieces of music, with each piece accompa-
nying multiple videos, totaling 12,670 videos. These videos
showcase a range of choreographies from basic to advanced,
offering a wide spectrum of movements for detailed analy-
sis. The pivotal advantage of AIST++ for our research is
its meticulous synchronization of music and dance move-
ments, which is crucial for music-driven dance generation
and analysis.

We organize our dataset by music pieces, allocating

10,564 videos and 50 music tracks to the training set, and
2,106 videos with 10 tracks to the test set. Each video is seg-
mented into frames, resized to 128×128 pixels. In the latent
flow estimation phase, we adopt the architecture from [19]
for both our image encoder and decoder. The flow predictor
follows [44]. The model is trained over 150 epochs with a
batch size of 100, using the Adam optimizer [23], starting
with a learning rate of 2 × 10−4, decreased by a factor of
0.1 after epochs 60, 90, and 120. For the denoising model’s
training, we employ a conditional 3D U-Net architecture
from [13], featuring four down-sampling and up-sampling
3D convolutional blocks. Time step t is encoded by the
sinusoidal position embedding [51]. The training spanned
250 epochs, starting with the same initial learning rate as
the first stage, and adjusted at epochs 100, 150, and 200.
We set T = 1000 and apply a cosine noise schedule [33]
and dynamic thresholding [41] at the 90% during sampling.

4.2. Evaluation Metrics

To assess the quality of generated videos, we use the
Fréchet Video Distance (FVD) [50]. For quantitative as-
sessment of image-level quality, we employ SSIM [56],
PSNR [15], and LPIPS [67]. Additionally, we use the CLIP-
Score (CS) [42] to measure the cosine similarity between
CLIP embeddings of the dance video and Wav2CLIP [58]
embeddings of the music, evaluating the coherence between
the dance video and the music. To evaluate synchroniza-
tion between the dancer’s movements and the music beat,
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Figure 5: Video quality comparison between our models. We use the same starting image and music piece to generate videos
with both our models, and select three frames from the same position.

we introduce the 2D motion-music alignment score (2D-
MM Align). This metric, inspired by the Beat Alignment
Score [27] for 3D scenes, adapts the concept for 2D envi-
ronments. The alignment score is calculated as the average
distance between each kinematic beat and its closest music
beat. 2D-MM Align is defined as:

2D-MM Align =
1

n

n∑
i=1

exp

(
−
min∀fy

j ∈Fy ∥fx
i − fy

j ∥2

2σ2

)
,

(7)
where F y = {fy

j } is the music beats, F x = {fx
i } is the

kinematic beats and σ is a normalized parameter. Addition-
ally, we incorporate the Audio-video Alignment Score (AV-
Align) [63] to quantify audio-video synchronization. This
metric analyzes optical flow in the video stream and audio
peaks in the audio stream and assesses their temporal align-
ment within a three-frame window.

Table 1: Quantitative results among our models and MM-
Diffusion. DabFusionb means our baseline model (with-
out beat information) and DabFusione means our enhanced
model (with beat information).

Model FVD ↓ LPIPS↓ PSNR↑ SSIM↑
MM-Diffusion 180.31 0.025 34.81 0.951

DabFusionb(ours) 194.44 0.032 26.17 0.957
DabFusione(ours) 193.98 0.033 26.88 0.959

4.3. Result Analysis

Video Quality Evaluation. To evaluate the quality of the
videos generated by our system, we use the music and the
first frame from the test set, resulting in 2,106 generated

Table 2: Quantitative results across different angles. C01
is in front of the dancer, C02 is in the upper right of the
dancer, C03 is in the right of the dancer, C09 is in front of
the dancer but closer than C01.

Model Camera FVD ↓ LPIPS↓ PSNR↑ SSIM↑
MM-Diffusion C01 176.93 0.019 35.52 0.949

C01 158.16 0.029 26.41 0.963
DabFusionb C02 197.01 0.039 25.031 0.952

C03 158.56 0.036 26.30 0.959
C09 195.83 0.037 25.09 0.953

C01 158.02 0.027 26.33 0.964
DabFusione C02 198.17 0.040 25.23 0.954

C03 157.94 0.036 26.29 0.960
C09 195.17 0.035 25.28 0.956

videos. We visually present outputs from our baseline and
enhanced models alongside ground truth in Figure 5. As
shown in Figure 5, the quality of the videos generated by
our model closely approximates that of real videos. Given
the novelty of our task and the lack of directly comparable
previous works in the I2V field, we benchmark our base-
line model DabFusionb and enhanced model DabFusione

against MM-Diffusion [40], the leading model in uncondi-
tional video generation. We select MM-Diffusion because
it is trained on a subset of the AIST++ dataset, closely
aligning with our training dataset and demonstrating state-
of-the-art video quality performance on AIST++. We ran-
domly generate an equivalent number of videos with MM-
Diffusion for comparison. A quantitative comparison be-
tween our models and MM-Diffusion is provided in Ta-
ble 1. Analysis of Table 1 reveals that the quality of
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Figure 6: Exemplar videos generated using our DabFusion. Showcasing dance videos with unseen individuals in various
poses. Following preprocessing of the input image, DabFusion demonstrates its ability to produce dance videos of high
quality.

videos produced by our models closely matches that of
MM-Diffusion. These comparisons underscore the compet-
itive quality of videos generated by our approach. Further-
more, the comparison between our baseline and enhanced
models suggests that incorporating beat information does
not significantly impact the quality of the generated videos,
as evidenced by their nearly identical evaluation scores.

A notable characteristic of the AIST++ dance dataset is
its use of nine cameras C01-C09 to capture dance perfor-
mances, offering multiple perspectives. We analyze four
specific angles, summarized in Table 2, to assess their im-
pact on video quality. MM-Diffusion, trained on a subset of
the AIST++ dataset using only data from the C01 camera,
is used to generate an equivalent number of videos for di-
rect comparison. Our models outperform MM-Diffusion in
terms of FVD and SSIM scores, especially for camera posi-
tion C01, demonstrating superior video quality. Analysis of
scores among different cameras indicates that direct cam-
era angles, such as C01 and C03, where the cameras point
straight at the dancer, result in higher-quality video gener-
ation compared to oblique angles like C02. Historically,
I2V research has not emphasized the impact of camera po-
sitioning. Our findings reveal that camera placement sig-
nificantly influences the quality of resulting videos, under-
scoring its importance in future I2V research. Additionally,
we explored the impact of camera distance by comparing
videos from C01 and C09, which share the same angle but
differ in their proximity to the dancer. The findings sug-
gest that cameras positioned further from the dancer tend to
yield better results.

Alignment Evaluation. In Table 3, we assess the syn-
chronicity between music-video and music-motion pair-
ings. The results indicate that our enhanced model sur-
passes the baseline in all evaluation metrics, demonstrat-

Table 3: Alignment results between our models: video-
audio synchrony and motion-beat alignment.

CS↑ 2D-MM Align↑ AV Align↑
GT 0.153 0.223 0.152

DabFusionb 0.138 0.202 0.141
DabFusione 0.142 0.215 0.148

Table 4: Alignment results based on dance styles.

Dance Style Model CS↑ 2D-MM Align↑ AV Align↑
GT 0.138 0.231 0.226

Break DabFusionb 0.122 0.212 0.218
DabFusione 0.131 0.223 0.229

GT 0.063 0.198 0.101
Ballet Jazz DabFusionb 0.061 0.188 0.097

DabFusione 0.057 0.193 0.098

GT 0.121 0.218 0.134
House DabFusionb 0.109 0.198 0.121

DabFusione 0.112 0.213 0.128

ing the positive impact of beat information on both video-
audio and motion-beat alignment. Figure 5 illustrates the
differences, showing that frames generated by our enhanced
model more closely resemble the ground truth videos. We
also evaluate the results according to dance style categories
corresponding to the music. These assessments, detailed in
Table 4, exhibit significant disparities in alignment scores
among various dance genres. Notably, Ballet Jazz yields the
lowest alignment scores, attributed to its challenging chore-
ography compared to other dance styles. Consequently, the
alignment scores reflect the varying levels of difficulty in-
herent to each dance genre.



4.4. Choreograph Anyone

DabFusion can choreograph individuals whether they
belong to the AIST++ dataset or not, requiring several pre-
processing steps. First, we use YOLO [36] for object detec-
tion and the Segment Anything Model [24] for segmenta-
tion to identify and segment the person from unseen scenar-
ios. We then substitute the individual in the image from the
AIST++ dataset with the newly segmented person, creating
a combined image. This fused image is set as the starting
frame to generate dance videos with musical conditions. We
randomly select images featuring diverse individuals in var-
ious poses to create dance videos. As illustrated in Figure
6, preprocessing of the input image results in a new image
compatible with DabFusion for dance video generation.

Table 5: Ablation study for result comparison between 40-
frame video and 80-frame video. The results are from our
enhanced model.

CS↑ 2D-MM Align↑ AV Align↑ FVD ↓
40 frames 0.142 0.215 0.148 193.98
80 frames 0.153 0.219 0.179 194.84

Table 6: Ablation study for result comparison between Mu-
sic embedding and text embedding. The results are from
our baseline model.

Embedding CS↑ 2D-MM Align↑ AV Align↑ FVD ↓
text 0.136 0.181 0.126 200.54

music 0.138 0.202 0.141 194.44

Table 7: Ablation study for result comparison about arbi-
trary length video generation. The results are from our en-
hanced model. We use the last frame of the first generated
videos as the starting frame of next video to generate longer
videos.

CS↑ 2D-MM Align↑ AV Align↑ FVD ↓
40 frames 0.142 0.215 0.148 193.98
80 frames 0.145 0.203 0.139 210.86
120 frames 0.131 0.197 0.121 256.32
160 frames 0.123 0.179 0.101 323.72

4.5. Ablation Study

Influence of Video Length. We observe that video length
impacts benchmark performance. Our models are trained
to generate videos of 40 and 80 frames. Due to training
time and computational resource considerations, we des-
ignate the 40-frame videos as the baseline. This compar-
ison is detailed in Table 5. The results indicate comparable

video quality between the two lengths; however, the 80-
frame videos demonstrate superior performance in align-
ment evaluations. This improvement is primarily attributed
to the extended music duration, providing more information
for enhancing alignment accuracy.
Text Embedding vs. Music Embedding. Given that
CLAP is trained on text-audio pairs, we aim to uncover the
type of information it extracts from music, hypothesizing
that CLAP primarily identifies dance style cues. To test
this, we conduct an experiment using our baseline model,
focusing solely on the embedding from CLAP. We substi-
tute the music embedding with one derived from CLAP us-
ing the text description of the dance style corresponding to
the music. The findings, presented in Table 6, indicate that
the impact of different embeddings on FVD and CS scores
is minimal. However, videos generated with text-based em-
beddings exhibit inferior motion-beat alignment. This sug-
gests that CLAP extracts more than just dance style infor-
mation; it also obtains details crucial for enhancing motion-
beat synchronization.
Arbitrary-Length Video Generation. Given the specialty
of our task, our model theoretically can generate videos cor-
responding to any length of music. By using the final frame
of one video sequence as the initial frame of the subsequent
sequence, we can create videos of arbitrary length. We con-
ducted experiments with four varying lengths of videos gen-
erated sequentially using our enhanced model; the results
are presented in Table 7. As video length increases, qual-
ity tends to drop rapidly. This decline is primarily because
the final frames generated by the model lack the fidelity of
actual video frames, becoming more apparent with longer
videos. Additionally, alignment scores diminish due to this
quality degradation. For instance, employing a pose esti-
mation algorithm to determine keypoints for calculating the
2D-MM Alignment score becomes less accurate with lower
video quality, adversely affecting the alignment score.

5. Conclusion
In this paper, we explore the intersection of two distinct

research areas: conditional image-to-video generation and
music-to-dance generation. We introduce a novel approach,
DabFusion, that directly generates dance videos from a sin-
gle image and accompanying music. This research inves-
tigates the role of music as a conditional input in image-
to-video synthesis and sets a foundational benchmark for
direct dance video generation in response to musical cues.
We further examine the extraction of crucial information for
enhancing motion-music beat alignment, leveraging both
the large-scale foundational model CLAP and the signal-
processing tool Librosa. Through extensive experimenta-
tion, we have established a robust baseline for this novel
task.
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